ANN Training: A Review of Soft Computing Approaches

Shakti Kumar
Baddi University of Emerging Sciences & Tech. Baddi (HP) INDIA
shakti@istk.org

Sukhbir Singh Walia
Punjab Technical University, Jalandhar, Punjab, INDIA.
drssaptu@gmail.com

Ashima Kalra
Surya World University
Punjab, INDIA
uppal.ashi@gmail.com.

Abstract: This paper presents an exhaustive review of ANN training algorithms available in the literature. Though both classical as well as soft computing based search and optimization algorithms have been reviewed yet the stress has been laid on soft computing based approaches. It has been observed that generally the classical learning approaches are local optimum based algorithms while the soft computing based approaches are global optimal based algorithms. We observe that no single learning approach is suitable for all types of search and optimization problems. Hence, for every new kind of problem new algorithm may be needed. This paper starts with a brief of neural networks, a quick glance on classical training approaches and then focuses on soft computing based approaches available in the literature. Some appropriate comparisons among them have also been made.

Index terms: Back propagation, artificial neural network, learning algorithm, soft computing.

1. INTRODUCTION

An Artificial neural network (ANN) is a massively parallel, distributed processing system made up of simple processing elements which has the natural ability for storing experiential knowledge and making it available for use when required. ANNs is a information processing paradigm that is inspired by the structure of brain. Neural networks, with their remarkable ability to derive something meaningful from complicated or imprecise data, can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. A trained neural network can be thought of as an "expert" in the category of information it has been given to analyze. ANNs’s are typically applied for pattern classification [1] [2] and pattern recognition [3] [4]. They have been successfully used for stock market predictions[5], wear and manufacturing processes[6], speech recognition [7], business applications [8], control applications [9], time series modeling and estimation applications [10], medical diagnosis [11] [12] [13], aeronautics[14] etc.

Gallant S. [15] was the first to describe a system combining the domain expert knowledge with neural training. This connectionist expert system (CES) consists of an expert system implemented throughout a multi layer perceptron. Various authors in papers [16] [17] demonstrated the structural learning with forgetting for training neural networks. Melanie Hilario et.al [18] presented a strategy for Modular Integration of Connectionist and Symbolic Processing in Knowledge based systems. Authors in papers [19] [20] demonstrated the rules generation from trained network using fast pruning. A rich literature survey has been found on the extraction of rules from the trained neural networks in papers [21] [22]. Various authors in their papers [23]-[42] presented the various different techniques for extracting rules from trained neural networks. Thrun S. [43] presented extraction of rules from artificial neural networks with distributed representations.

Different types of architectures and corresponding learning algorithms can be found in literature. Some of the widely used architectures along with their learning algorithms and applications are given in Table 1. There are basically two types of architectures: Feed forward networks, Feedback /Recurrent networks. Feed forward networks can further be classified as single layer perceptron, multi-layer perceptron (MLP) and radial basis function networks (RBFN). On the other hand recurrent/ feedback type networks consist of networks like competitive networks, Kohonen’s self-organizing Maps (SOM,) Hopfield networks (HN) and adaptive resonant theory (ART) models. Learning is the backbone of any kind of neural network design. Learning is a process by which the free parameters of a neural network are adapted through a process of simulation by the environment in which the network is embedded. There are three types of learning algorithms: Supervised learning, unsupervised learning and hybrid learning. Supervised learning is the learning with a teacher. In this type of learning, a kind of target or desired output signal is present with which the computed output signal is compared to the error signal. Paradigms of supervised learning include Perceptron learning algorithm, error correction learning, stochastic learning, Adaline, Medalline Boltzmann learning algorithm, learning vector quantization etc. An unsupervised learning is a kind of learning without teacher i.e no desired output signal is available. This type of learning is based on the concept of using self organization to compute the output. Paradigms of unsupervised learning are Hebbian learning and competitive learning, Kohenen learning (SOM), ART1, ART2. Hybrid learning is the combination of two types of learning mentioned above. Paradigms of hybrid learning are radial basis
function (RBF) learning. The essence of a learning algorithm is the learning rule, i.e., a weight-updating rule which determines how connection weights are changed. Different types of learning laws are used to update the synaptic weights like delta law, perceptron law, instar learning, outstar law etc. The training process can be on-line or batch training. In on line training, the weights are adjusted after the processing of a randomly selected training pattern while in batch training; the weights are adjusted after processing all the training patterns. Since ANN based systems are highly complex and non linear systems, we divide the learning algorithms in the following two classes: a) Classical Learning algorithms b) Soft Computing based algorithms. We define soft computing based algorithms as the one’s that uses approximate reasoning in ANN training. These algorithms include fuzzy logic based approaches, swarm based approaches and the other approaches based upon certain other nature inspired computing approaches.

Section II of this paper presents a quick glance on classical approaches used for ANN training available in literature. Section III reviews soft computing based approaches found in the literature. Section IV of this paper compares the two approaches and Section V concludes the paper.

2. CLASSICAL LEARNING APPROACHES

Literature is rich with training & design approaches for ANN. There are many literatures address in the training and designing of ANN system. Various classical as well as soft computing based search and optimization methods are available in literature for the training of neural networks and are shown in Table 2. Werbos [44] introduced EBP for the first time as the roots of propagation. Rumelhart [45] further elaborated it as the learning representations of NN by back propagating errors. This algorithm includes different versions like standard or incremental back propagation (IBP), Freeman and Skappura [46] in which the network weights are updated after presenting each pattern from the learning data set, rather than once per iteration and batch back propagation (BBP), Hagan et.al [47] in which the network weights update takes place once per iteration, while all learning data pattern are processed through the network and quick propagation (QP), Fahlmann [48] which is a heuristic modification of the back propagation algorithm. To improve the convergence speed of EBP, Rumelhart extended his work by introducing the momentum term [49] [50] [51]. The various adaptive learning methods like Delta-bar-Delta (DBD), R A Jacobs, Tollenare [52] [54], Extended Delta Bar Delta (EDBD), Minai and Williams [56], SSAB(Super-SAB), Tollenare [57], resilient propagation(RPROP), Riedmiller and Braun [58] and the generalized no-decrease adaptive method(GNDAM), R. Allard, J. Faubert [59] have been developed to self adjust the LR(learning rate) and to just get rid of the slow convergence problem thereby obtaining the optimal solution. The hybrid learning schemes have been proposed to incorporate second derivative related information in Rprop, such as the QRprop [60], which is the combination of RPROP with the one dimensional secant steps of quick algorithm and the Diagonal Estimation Rprop–DERprop [61], which directly computes the diagonal elements of the Hessian matrix. Also approaches inspired from global optimization theory have been developed to equip Rprop with annealing strategies, such as the Simulated Annealing Rprop–SARprop and the Restart mode Simulated Annealing Rprop i.e ReSARprop [61] in order to escape from shallow local minima. Another improvement was proposed as Improved Rprop (iRprop) algorithm, C. Igel and M Husken [62] [63] [64] which applies a backtracking strategy (i.e. it decides whether to take back a step along a weight direction or not by means of a heuristic), has shown improved convergence speed when compared against existing Rprop variants, as well as other training methods. Aristoklis D A [65] [66] proposed another algorithm G Rprop which was modification over iRprop and exhibited better convergence speed and stability than Rprop and iRprop. The other two second order approaches: conjugate gradient and Quasi Newton have been reported as the most successfully applied to the training of feed forward neural networks amongst all those using second order information. Conjugate gradient method was first initiated by Hestenes and Stiefel(1952) for linear functions and then based on this work, Fletcher and Reeves(1964) further extended it as conjugate algorithm for non linear functions. Afterwards Beale, 1972 proposed conjugate gradient method with the provision of restarting direction procedure. Navon and Legler [67] has presented a review of various conjugate gradient algorithms for large scale minimization where they covered almost four types of Conjugate Gradient algorithms and compared their advantages as well as shortcomings. Johansson et al. [68] proposed a conjugate gradient with line search (CGL) method where a step size is approximated with line search by avoiding the calculation of Hessian Matrix. M F Moller [69] proposed a Scaled conjugate gradient (SCG) method for fast supervised learning and was found to be more faster than CGL and BP. A M S Barreto, C.W. Anderson [70] proposed a restricted Gradient descent (RGD) algorithm for training local RBF networks in the context of reinforcement learning.

BFGS Quasi Newton optimization approach with limited memory was first proposed by R. Battiti and F. Masulli [71]. There were basically two update approaches for quasi Newton’s method – BFGS (Broyden, Fletcher, Goldfarb and Shanno) update, Battiti [71][72] and the DFP(named for Davidson,
Fletcher and Powell) update, Watterous [73].

J E Dennis and J J More [74] presented the survey with justification of use of Quasi Newton methods over Newton method for general and gradient non linear systems and proved it to be more computationally efficient than Newton method. A Likas, A Stafylopatis [75] presented the training of random neural network using Quasi Newton methods. The Levenberg-Marquardt algorithm (LM), M. T. Hagan and M. B. Menhaj [76] [77], is also used as another algorithm to increase the convergence speed. But the LM algorithm becomes impractical for large sized neural networks so another modification of LM i.e TREAT algorithm, Y Chan [78] is then preferred for large sized networks. So Traditional training algorithms, such as BP and LM have been successfully applied to train neural networks by some authors in papers [79][80][81]. But still these algorithms require more memory storage, computation, and there is always a risk of getting trapped in local minimum, as they are not derivative free. This is one of a main reasons to move towards nature inspired or soft computing based search and optimization approaches.

3. SOFT COMPUTING BASED APPROACHES

Nature is the best example for optimization. As even if we observe the each and every minute process of nature; we will find that it always goes for an optimal strategy like the interaction of organisms, any physical phenomena like the river flow or formation, rain etc. The problems in computer science may have a lot in common with the problems faced and even solved by the nature. So a quite easy mapping could be possible between nature and technology. So the heuristic approach like nature inspired or soft computing based algorithms are much superior in solving complex optimization problems where traditional or classical problem solving methods fail. These approaches are broadly classified into three-

- Evolutionary computing (EC),
- Swarm intelligence (SI),
- Bio inspired Non-SI, physics or chemistry based algorithms and other approaches.

Various soft computing based Search and optimization based approaches are available in the literature and are shown in Table 3. Evolutionary Computing is based on the biological evolution process in nature Swarm intelligence based algorithms are based upon collective social behavior of organisms. Bio inspired Non SI optimization algorithms are bio inspired or ecology based but are not inspired by the cooperative behavior of any organisms. Physics or chemistry based algorithms are actually inspired by certain physical or chemistry laws like electric charges, gravity, theory of universe etc. Literature is also rich for soft computing based search and optimization approaches. ANN learning model, based on EA’s, BBO, Dan Simon 2008 [91], based upon ACO, Dorigo and Gambardella [93] [94], based upon PSO, Eberhart and Kenedy [95], based upon DE, Storn and Price [96], based upon FA, Yang [102], based upon ABC, Karaboga and Basturk [103], [104], based upon IWO, Mehrabian and Lucas [105][133], based on AIS, Dasgupta [107] [108], based upon EEIM Birbil & Fang [109]-[111], based upon BFOA, Passino [112]-[114], based upon GSA, Rashiedi et.al [115]-[116], based upon FSA .Li Xiao-lei et.al [117] and based upon BB-BC, O K. Erol, I Eksin [118][119] are available in literature. These soft computing based approaches have been successfully applied for ANN model identification. S. Kumar et.al [120] presented ANN model identification for rapid battery Charger. Parallel BB-BC algorithm was a multi-population algorithm proposed by S Kumar et.al [122], S Kumar et.al [123] further presented overall rating and evaluation of institutions of higher learning using BBBC and parallel BB BC based on fuzzy model identification. Similar kinds of techniques are available for fuzzy model identification also. Fusion of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) have attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. Neuro Fuzzy (NF) computing is a popular framework for solving complex problems, Various authors discussed the design of neuro fuzzy controller [124]-[128] and adaptive neuro fuzzy systems [129][130].

4. CLASSICAL Vs. SOFT COMPUTING APPROACHES

Various authors have compared the soft computing based approaches with classical learning approaches as well as hybrid techniques for NN learning. Various comparisons have been made in literature among classical learning approaches too. Marcus Pfister et.al [131] also compared five algorithms so as to speed up the back propagation i.e gradient reuse algorithm, Delta Bar Delta (DBD), Extended DBD, dynamic adaptation, quick prop and extended quick prop for five different benchmark problems. This paper also concluded that a learning algorithm that may be proved very faster for one problem, may fail in another case. The results show that Quickprop was the one that performed very well in all the benchmark problems while Extended QP was a big failure. For smaller problems gradient reuse algorithm is faster than BP but even much slower in case of complex problems. Remy Allard et.al [132] compared and validated various adaptive learning methods i.e MOM(momentum), DBD(Delta Bar Delta), SSAB(Super SAB), RPROP(Resilient Prop) and GNDAM(Generalized no-decrease adaptive method) on four benchmark problems i.e parity-bit, encoder, texture detection and luminance. It clearly shows that
a single adaptive method (AM) approach cannot be proved overall best for all the tasks but the results may vary depending upon the task. MOM and DBD had a similar behaviour when they were used on the luminance, encoder and parity task. The only task of which they clearly differed was the texture task where MOM never solved the task as opposed to DBD. RPROP showed a net advantage over SSAB for the parity-bit and luminance tasks detection. A numbers of soft computing based approaches are compared against BP or LM for various bench mark problems in the literature. J.N.D Gupta et.al [133] compared Standard EBP with GA for optimizing artificial neural networks. The empirical results showed that the GA is superior to BP in effectiveness, ease-of-use and efficiency in training NNs. Further Zhen Guo Che et.al [134] compared BP with GA and drawn conclusion that BP is much superior and having faster training speed than GA with a drawback of having over training which GA doesn’t have. Paul Batchis [135] compared EA with BP using Weka Knowledge Explorer software package on three classification problems. In this, EA is found to outperform the BP method. G V R Sagar [136] also proposed an EA for Connection Weights in Artificial Neural Networks and compared it with BP algorithm for a X-OR benchmark problem. It was shown that EA-ANN approach gave zero mean square error than the (BP) gradient descent method dataset, and the results did not depend on the initial choice of weights. It gives the increased performance of the network in terms of accuracy. Asha et.al [137] compared ABC with BP for classification task using four benchmark datasets availed from the UCI machine learning .This paper implemented ABC for optimizing the connection weights and concluded that ABC performance is found to be better for the four dataset as compared to BPN performance. For achieving global optimization, various soft computing based global optimization algorithms can be used standalone or in a hybrid manner in which some local search phenomena like BP or LM is hybridized with some soft computing based global optimization algorithm. Such hybrid approaches are also compared with standalone soft computing based approaches. Enrique Alba and J. Francisco Chicano [138] proposed training Neural Networks with GA Hybrid Algorithms. They suggested the concept of weak hybridization (just the combination of two algorithms) by introducing and testing GA with the BP algorithm (GABP), and a GA with LM (GALM). J Zhang et.al [141] proposed a hybrid PSO-BP algorithm where it was shown that the PSO–BP algorithm uses less CPU time to get higher training accuracy than the PSO algorithm as well as the BP algorithm. So the hybrid of PSO-BP is better than using BP or PSO alone. Another hybrid learning approach ACO-BP was proposed by L Yan Peng et. al [142] and their results show that the ACO-BP is more effective and efficient than the standalone BP algorithm. It is also concluded that with the variation of the number of hidden nodes, the performance of ACO-BP became stable compared to ACO or BP alone. Mavrovouniotis and Yang [143] proposed NNACO-BP for different real-world benchmark dataset taken from the UCI repository. This paper compared the performance of ACO and ACO-BP training against; two classical learning approaches i.e BP and LM, RCH (ACO training without pheromone consideration), a standalone ACO and a hybrid ACO from the literature (i.e., ACOR and ACOR-BP), respectively, and four soft computing based approaches i.e. GA, PSO, ABC and DE. The author concluded that ACO was a good choice for selecting good values for the BP. The standalone ACO training was outperformed by the standalone ACO training whereas the hybrid ACO-BP showed superior performance, especially on large problem instances. Secondly, the performance of gradient descent methods is degraded as the problem size increases when compared with the hybrid ACO-BP training algorithm. Third, gradient descent methods usually have better performance than a standalone GA, PSO, ABC, ACO and DE training. ACO has a relatively good performance when compared with other metaheuristics in network training for pattern classification. Huadong Chen et.al [145] proposed a hybrid of AFSA-PSO for Feed forward Neural Network Training and showed that hybrid FSA-PSO has better global astringency and stability than standalone FSA and standalone PSO. S. Nandy et.al [146] compared the performance hybrid ABC-BP with hybrid GA-BP on the basis of three parameters i.e SSE (sum of squared error), convergence speed and stability on optimum solution for four data sets (iris, wine, soya bean and glass). It showed that ABC-BP is better than GA-BP with increased efficiency. Various soft computing based approaches for NN learning are also compared with each other. Yun Cai [147] proposed Artificial Fish School Algorithm(FSA) for Combinatorial Optimization Problem and stated that the algorithm has better convergence performance than GA and ACO. Basturk and Karaboga [148] compared the performance of ABC algorithm with GA , PSO and Particle Swarm Inspired Evolutionary Algorithm (PS-EA). The results showed that ABC outperforms the other algorithms. Basturk and Karaboga [149] further compared the performance of ABC algorithm with that of DE, PSO and EA for a set of well known test functions. Simulation results show that ABC algorithm performs better than the mentioned algorithms and can be efficiently employed to solve the multimodal engineering problems with high dimensionality. D Karaboga , B Akay [150] compared ABC with GA, PSO, DE and ES for optimizing a large set of numerical test. Results show that the performance of the ABC is better than or similar to those of other population-based algorithms.
with the advantage of employing fewer control parameters. V. Saisanmuga Raja et al. [151] compared three optimization techniques GA, ACO and PSO in biomedical application based on processing time, accuracy and time taken to train Neural Networks. The author concluded that GA outperformed the other two algorithms- ACO and PSO and is most suitable for training the neural network with minimum time and minimum mean square error. Dipti Srinivasan et al. [152] proposed particle swarm inspired EA (PS-EA) and compared it with Genetic Algorithm (GA) and PSO. It is found that PS-EA is much superior over typical GA and PSO for complex multi-modal functions like Rosenbrock, Schwefel and Rastrigin functions. A. Ghaffari et al. [153] presented five training algorithms-two versions of gradient descent-IBP(incremental), BBP(Batch) and LM, QP, GA with reference to the predicting ability. The convergence speed of BBP is three to four times higher than IBP. The performances in terms of precision of predictive ability were in the order of: IBP, BBP > LM > QP (quick propagation) > GA. Zhang et al. [154] presented application of bacteria foraging optimized neural network (BFO NN) for short term electric load forecast. The author used BFO to find optimized weights of neural network while minimizing the MSE. Simulation results also showed that BFONN converges more quickly than Genetic algorithm optimized neural network (GANN).

Ivona BRAJEVIC et al. [155] presented Training Feed-Forward Neural Networks Using Firefly Algorithm (FA) for classification purpose. This paper compares FA with GA and ABC for three well known classification problems(X-OR, three bit parity, four bit encoder /decoder problem) FA using sigmoid transfer function. The parameters used for comparison are MMSE: Mean of Mean Squared Errors, SDME: Standard Deviation of Mean Squared Errors, MC: Mean of Cycle Numbers, SDC: Standard Deviation of Cycle Numbers. It shows that FA performs better than GA algorithm, but worse than ABC algorithm for the majority of benchmark problems. It also stated that the choice of transfer functions may strongly influence the performance of neural networks, so it also compared the FA results obtained by using traditional sigmoid transfer function with another by using sine transfer function and showed that FA implemented using sine transfer function is much efficient with fast convergence speed. R Giri [157] proposed a modified version of Invasive Weed Optimization (MIWO) for training the feed-forward Artificial Neural Networks (ANNs) by adjusting the weights and biases of the neural network. In this, Modified IWO was compared with DE, BP, One step secant learning and RPROP based on MSE. Modified Iwo is performed better than DE and other classical gradient-based optimization algorithms mentioned in terms of learning rate and solution quality. Harpreet Kaur et al. [158] compared BBO with other optimization algorithms like PSO, ACO and found better for the detection of abnormal growth of tissues in MRI image segmentation. S. Mirjalli et al. [159] proposed hybrid PSO-GSA for training neural networks and proved it to outperform other optimization algorithms such as PSO and ACO in terms of converging speed and local minima avoidance. Saeide Sheikhpour [160] proposed a hybrid GSA-GA for neural network training that uses the GSA(Gravitational Search algorithm) to do global search in the beginning of stage, and then uses the GA (Genetic Algorithm) to do local search around the global optimum and proved it more efficient than standard GSA and back propagation algorithm. Bao-Chang Xu et al. [161] proposed an Improved Gravitational Search Algorithm (IGSA) for Dynamic Neural Network Identification. It showed the best performance when compared with the system identification based on gravitational search algorithm neural network (GSANN) and other conventional methods like BPNN and GANN. A Hatamlou [162] proposed a Black Hole (BH) algorithm for data clustering. He tested BH algorithm against five different algorithms- K means, PSO, GSA, and BB BC with different data sets (iris, cancer etc.) and proved it superior to other algorithms in some cases. Saeed Ayat et al. [163] compared various ANN learning algorithms in which 12 algorithms concerned with Perceptron multilayer neural networks were studied and 6 classical learning algorithms (Gdx, cgb, lm, oss, cgf, cgpp) have presented an acceptable percentage of accountability. Conjugate gradient and LM is found to have better efficiency in reaction to the given training as compared to others. The author concluded that LM is the most convergent and represented better predict of average. Nasser Mohammadi et al. [164] compared the PSO with the variants of back propagation techniques (LM, GD, GDM, GDA, GDMA) based on mean square error (MSE) and accuracy. The author concluded that LM is found to have better performance than other variants of BP but PSO is more superior to LM and other variants of BP. The performance level is found to be PSO>LM>other BP variants.

5. CONCLUSION

An extensive survey has been carried out on the available classical as well as the soft computing based approaches available in literature. In case of classical learning approaches, it is evident that not a single training algorithm can be proved best for all the test or benchmark problems. In fact it is the problem dependant. It is found that as the classical learning approach either EBP or LM is having the poor convergence speed so the soft computing based approaches are to be preferred as the global optimization approaches. These soft computing based
approaches can be used to evolve ANN architecture or the synaptic weights. These approaches can be used standalone or in a hybrid manner with EBP or LM. It is evident that the hybrid techniques are found to be more efficient than standalone soft computing approaches. In this survey we made an attempt to cover major classical and most of the soft computing approaches to evolve ANNs.

References

[34] Zhi-Hua Zhou , “Rule Extraction: Using Neural Networks or For Neural Networks?”, National Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
[38] GG Towell and J W Shivalik, Knowledge-Based Artificial Neural Networks", Appears in Artificial Intelligence, volume 69 or 70..Submitted 1992, Final pre-publication revisions 8/94

[42] Hiroshi Tsumimoto, "Extracting Propositions from Trained Neural Networks, Neural Networks,pp 1098-1105.

[76] Hao Yu, Bogdan M. Wilamowski ,Member IEEE “Levenberg-Marquardt Training”.

[106] Yuna Mazwin Mohd Hassim and Rozaida Ghazali, “Training a Functional Link Neural Network Using an Artificial Bee Colony for Solving a Classification Problems”.

[135] Paul Batchis, " An Evolutionary Algorithm for Neural Network Learning using Direct Encoding".

<table>
<thead>
<tr>
<th>Paradigm</th>
<th>learning Rule</th>
<th>Architecture</th>
<th>Learning Algorithm</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised Training</td>
<td>Error Correction</td>
<td>Single layer or</td>
<td>Perceptron learning</td>
<td>Function approximation, Prediction and control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multilayer Perceptron</td>
<td>Algorithm (LMS), BP, Adaline and Medialine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boltzmann</td>
<td>Recurrent</td>
<td>Boltzmann Learning algorithm</td>
<td>Pattern Classification</td>
</tr>
<tr>
<td></td>
<td>Hebbian learning</td>
<td>Multilayer feed forward</td>
<td>Linear discriminant Analysis</td>
<td>Pattern classification, data Analysis</td>
</tr>
<tr>
<td></td>
<td>Competitive Learning</td>
<td>competitive</td>
<td>Learning Vector Quantization</td>
<td>within class categorization</td>
</tr>
<tr>
<td></td>
<td>ART networks</td>
<td>ART map</td>
<td></td>
<td>Pattern Classification, within class categorization</td>
</tr>
<tr>
<td>Un-Supervised Training</td>
<td>Error Correction</td>
<td>Multilayer Perceptron</td>
<td>Sammon's Projection</td>
<td>Data Analysis</td>
</tr>
<tr>
<td></td>
<td>Hebbian learning</td>
<td>feed forward or</td>
<td>Principal Component analysis ; Associative Memory</td>
<td>Data Analysis, Data compression ; Associative Memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Competitive ;</td>
<td>Learning ; Hopefield network</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Competitive Learning</td>
<td>competitive</td>
<td>Vector Quantization</td>
<td>Categorization, Data Analysis</td>
</tr>
<tr>
<td></td>
<td>ART networks</td>
<td>ART-I, ART-II</td>
<td></td>
<td>Categorization</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Error Correction</td>
<td>RBF Networks</td>
<td>RBF Learning Algorithms</td>
<td>Pattern Classification, Function Approximation, Prediction & Control.</td>
</tr>
<tr>
<td></td>
<td>and Competitive.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>Author, Reference</td>
<td>Algorithm</td>
<td>Author, Reference</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>EBP(Error Back</td>
<td>Werbos,1974;</td>
<td>Conjugate SSAB</td>
<td>M. T. Hagan and M. B.</td>
<td></td>
</tr>
<tr>
<td>/Steepest Gradient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momentum(MOM)</td>
<td></td>
<td>propagation (QP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard or</td>
<td>Freeman and Skappura, 1991[46]</td>
<td>Levenberg-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incremental</td>
<td></td>
<td>Marquardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backpropagation (IBP),</td>
<td></td>
<td>algorithm (LM),</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(BBP)</td>
<td></td>
<td></td>
<td>Wilamowski,1999[77]</td>
<td></td>
</tr>
<tr>
<td>Delta-Bar-Delta(DD)</td>
<td>R A Jacobs,1988[52][54]</td>
<td>Newton's method</td>
<td>Flectcher,1975</td>
<td></td>
</tr>
<tr>
<td>(Adaptive learning)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended DBD</td>
<td>Minai and Williams,1990,[56]</td>
<td>Quasi Newton</td>
<td>Bryoden,Fletcher,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method-BFGS</td>
<td>Goldfarb,Shanno,1970</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R. Battiti and F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Masulli.,1990[71][72]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decrease adaptive</td>
<td></td>
<td>Gradient(SCG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>method (GNDAM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resilent</td>
<td>Riedmiller and</td>
<td>Restricted</td>
<td>A M Salles Baretto,CW</td>
<td></td>
</tr>
<tr>
<td>PROP(RPROP)</td>
<td>Braun,1993[58]</td>
<td>Gradient</td>
<td>Anderson,2008[70]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qrprop</td>
<td>M. Pfister and R.</td>
<td>Conjugate</td>
<td>Johannson,Dorwa &</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with line search(CGL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonal Estimation</td>
<td>1998 [61],</td>
<td>TREAT</td>
<td>Y Chen,B M</td>
<td></td>
</tr>
<tr>
<td>Rprop–DERprop,</td>
<td></td>
<td>algorithm</td>
<td>Williamowski[78]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Rprop</td>
<td>N. K. Treadgold and T. D.</td>
<td>Improved</td>
<td>C Igel and M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gedeon,1998[61]</td>
<td>RPROP(iRPROP)</td>
<td>Husken,2003[62][63][64]</td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>Author, Reference</td>
<td>Algorithm</td>
<td>Author, Reference</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------------------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>BFOA</td>
<td>Passino,2002[112],[114]</td>
<td>PSO(Particle Swarm Optimization)</td>
<td>Eberhart and Kennedy,1995[95]</td>
<td></td>
</tr>
<tr>
<td>Hybrid PSO-GSA</td>
<td>S. Mirjalili et al.2012[140]</td>
<td>FA(Firefly Algorithm)</td>
<td>Yang,2009 [102]</td>
<td></td>
</tr>
<tr>
<td>Parallel BB-BC</td>
<td>S Kumar et al. [160]-[163]</td>
<td>FSA(Fish Swarm Algorithm)</td>
<td>Li Xiao-lei et al (2002)[117]</td>
<td></td>
</tr>
<tr>
<td>Hybrid GSA-GA</td>
<td>Saeide Sheikhpour [160]</td>
<td>EANN(Evolutionary ANNs)</td>
<td>Yao,1999[82][83]</td>
<td></td>
</tr>
<tr>
<td>Improved GSA(IGSA)</td>
<td>Bao-Chang Xu ,2014 [142]</td>
<td>GA (Genetic Algorithm)</td>
<td>Holland,1975[87][88]</td>
<td></td>
</tr>
</tbody>
</table>